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Abstract

In the analysis of current-voltage characteristics of a probe in a plasma, as origi-
nally developed by Langmuir, it is assumed that the mean-free path of all plasma par-
ticles is large in comparison with the probe dimensions, in order that the plasma
density, temperature, and potential as derived from the measured characteristics be
the same as those of the plasma undisturbed by the probe. When this condition does not
hold, the plasma density and potential in the vicinity of the probe are different from
those of the undisturbed plasma. The perturbation of the plasma by a probe is analyzed
in this report as a problem in ambipolar diffusion, subject to the assumptions that the
mean-free path of plasma particles is: (a) comparable to or smaller than probe dimen-
sions, and (b) much greater than the thickness of any sheaths that may be present.
Sheaths must therefore be assumed to be thin in comparison with probe dimensions.
Analyses are carried through for spherical probes and for plane probes oriented normal
to a magnetic field.

The results can be expressed in terms of a parameter Q which is appr( iately
equal at zero sheath potential to the sum of the ratios of probe size to electi . mean-
free path and probe size to ion mean-free path. Since Q also depends on sheath poten-
tial, the current-voltage characteristics are distorted. Methods for determining zero
sheath potential, and calculating the properties of the undisturbed plasma from the probe
curves are given.
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GLOSSARY

Symbol Definition

n Density of electrons or ions in neutral plasma

* 0 Density of electrons or ions in the unperturbed plasma

*np Density of electrons or ions at the sheath boundary (i.e., at the probe)

Ike# Li Electron, ion mobility

rel r. Particle current density of electrons or ions

Ve , Vi  Voltage equivalent of electron, ion temperatures in the plasma
(kTe kTi

e

Ves, Vis Voltage equivalent of electron, ion temperatures at the sheath boundary

D a Ambipolar diffusion coefficient

r Probe radius

Vs  Potential difference across the sheath, positive when probe is positive
with respect to plasma outside the sheath

Vo  Potential of the unperturbed plasma

Vp Potential of the plasma at the sheath boundary (i.e., at the probe)

AV Vp-V 0 perturbation of the plasma potential by the probe

e 2 Equals 1 + eB (where B is magnetic field)

2 2 2
Yi Equals 1 + ftB

2Z Equals 1 + Re iB2

Equals z/pR

iv



I. INTRODUCTION

In the analysis of the current-voltage characteristics of a probe in a plasma, as
1

originally developed by Langmuir, it is assumed that the mean-free path of all plasma

particles is large in comparison with probe dimensions. When this is the case the elec-

tron density and temperature, and plasma potential derived from the analysis are the

same as those of the plasma in the absence of the probe.
When this is not the case the plasma density and potential in the vicinity of the probe

may be quite different from those of the unperturbed plasma, since ions and electrons
must diffuse from the undisturbed regions of the plasma to the vicinity of the probe. If

the mean-free path is very short, the density gradients in the plasma may be quite large,
and the plasma density in the vicinity of the probe will be substantially different from

that of the undisturbed plasma. This situation is aggravated when a magnetic field is
present because of the reduction of the diffusion coefficient of plasma particles in the
direction transverse to the magnetic field.

The analysis that is given herein was undertaken for the purpose of interpreting the
probe characteristics in a discharge tube with an axial magnetic field. Similarly moti-

vated studies have been reported by Bickerton and von Engel 2 and by Bertotti. 3 Neither
of these is applicable to the present case. The first study treated plane probes parallel

to the magnetic field and was restricted to relatively low magnetic fields, while in the
second it was assumed that the longitudinal mean-free path of all particles is long in
comparison with any relevant dimension. Neither of these conditions is satisfied in the

discharge in which measurements were made.

Because the use of magnetic fields up to 60,000 gauss, or more, was contemplated,
the configuration of a plane probe normal to the magnetic field was chosen. We assume

the presence of a sheath between probe and plasma. Provided that the sheath is thin in

comparison with the mean-free path, the random currents of ions and electrons across
the sheath from plasma to probe will be unaffected by the presence of the magnetic field,
since they depend only on the component of velocities normal to the probe and parallel

to the magnetic field.

Although the probe current for a given plasma density immediately outside the sheath
is not affected by the magnetic field, the plasma density and potential themselves most
certainly are. The electrons and ions must diffuse to the sheath boundaries, and their
diffusion coefficients are strongly affected by the magnetic field.

The problem is one of ambipolar diffusion; we must match the diffusion current from
the plasma to the random current across the sheath toward the probe. The axial sym-
metry of this problem dictated the use of cylindrical coordinates, which has the disad-

vantage of yielding answers in the form of an infinite series of Bessel functions.

In setting up the problem, we recognized that a similar physical situation exists in
the absence of a magnetic field when mean-free paths are small in comparison with p.7obe
dimensions. Again, we have to match an ambipolar diffusion current from the plasma



to the random current across the sheath toward the probe. Since this case can be treated

in spherical coordinates (as a one-dimensional problem), provides considerable insight

into the physical basis of the problem, and yields answers in a particularly simple closed

form, it will be treated in some detail first.

The results of this analysis are far from being a trivial warm-up exercise, since

many recent probe investigations of normal discharges in the absence of magnetic fields

have invaded the domain of probe sizes comparable to or greater than mean-free paths.

The results reported herein can be used to estimate the degree of perturbation of the

plasma by the probes in these experiments, and permit the correction of the data for the

errors introduced thereby.

We note that the procedure of matching diffusion current to random current is similar

to the treatment by Allis and Buchsbaum 4 of the "pre-sheath." This they classify as the

region of the plasma (in which ni = ne) in which the ions collected by the probe are pro-

duced, and into which there is a penetration of electric field from the probe to satisfy

the condition of continuity of ion current. Our work differs from that of these authors
in that they consider ion mean-free paths to be large in comparison with all dimensions,

and assume electron density to be everywhere in equilibrium with electrostatic potential.

I consider the case in which all mean-free paths are short in comparison with the dimen-

sions of the pre-sheath, so that diffusion equations apply. The pre-sheath is then the

region of the plasma perturbed by the probe. Moreover, since results are to apply for

positive probe potentials at which electron currents may be large, the assumption that

the electron density is in thermal equlibrium with electrostatic potential cannot be made.

A calculation similar to that undertaken here has been reported by Davydov and

Zmanovskaja. 5 These authors consider the case of ambipolar diffusion to a sheath sur-

rounding a spherical or cylindrical probe in the absence of a magnetic field for ion tem-

peratures that are negligible in comparison with electron temperatures. Boyd 6 has

criticized their results on the ground that the boundary conditions at the sheath edge are

much more complex than the abrupt discontinuity between neutral plasma and unipolar

sheath employed by Davydov and Zmanovskaja. Boyd distinguishes between three

regions: (a) a unipolar sheath in which ions are falling freely toward the probe; (b) a

quasi-neutral region in which ions are being accelerated toward the probe, making a few

collisions with gas atoms, with velocity proportional to the square root of electric field;

(c) a diffusion region where ions move by ambipolar diffusion in a neutral plasma.

In the diffusion region the plasma density at the inner boundary is determined in part

by the radius of the inner boundary; the results of Davydov and Zmanovskaja agree with

those of Boyd when this radius is not sensibly different from that of the probe, that is,

when the thickness of sheaths (a) and (b) are small in comparison with probe radius.

When this is not true, the problem becomes much more complex because the "effective

probe radius" to be used for the ambipolar diffusion part of the problem becomes a func-

tion of the potential drop across the sheath, and the more elaborate matching procedure

of Boyd must be used.



We note that in high electron density plasmas the thicknesses of the regions (a) and

(b) can be small, especially in the range of only a few volts on either side of zero poten-

tial drop across them. We shall therefore follow the procedure of Davydov and

Zmanovskaja, including the ion temperature explicitly, and show that in the domain of

validity of this procedure (re r p ' 10 cm 2 , r / 0.1) information about the plasma ion

temperature can be deduced from the shape of the probe characteristic near zero sheath

potential.

In Section II we shall consider a spherical probe in a spherical discharge tube, fol-

lowing closely the procedure of Davydov and Zmanovskaja. In Section III, a plane probe

normal to an axial magnetic field will be taken up. Section IV will be devoted to a dis-

cussion of the results, and Section V to recently reported probe studies in the light of

these results. Insofar as possible, the stress will be placed on physics, and mathemat-

ical details will be given in the appendices.

The following assumptions have been made.

(i) The plasmas are those of diffusion-controlled discharges, in which there is con-

tinuous ion production that is proportional to electron density to replace diffusion losses

of electrons and ions.

(ii) Electrons have a Maxwellian energy distribution; electron and ion temperatures

are assumed to be independent of position, and to be unchanged by the presence of the

probe.

(iii) The probe radius is very much smaller than the tube radius (<1 per cent). This

insures that losses of electrons and ions to the probe are small in comparison with dif-

fusion losses to the walls; this restriction is necessary if electron temperature is to be

unchanged by the presence of the probe.

(iv) Ion mobility in the absence of a magnetic field is negligible in comparison with

electron mobility.

(v) Probe radius is much greater than sheath thickness; or alternatively, the outer

radius of sheath is essentially the same as that of the probe. Sheath thickness is small

in comparison with the mean-free path.

(vi) OClassical" diffusion in a magnetic field is assumed to apply.

3



H. SPHERICAL PROBE IN A SPHERICAL TUBE

2.1 PERTURBATION OF ELECTRON DENSITY

We must first set up the ambipolar diffusion equation, which we do without making

the usual assumption that electron and ion currents are equal. We assume only that

electron and ion densities are equal and that div re = div r i = nvi, the rate of ion pro-

duction per unit volume. We start with the transport equations

re = -n eE - eVe .nj
(1)

ri =n LiE- LiV i 'n I

Take the divergence of both sides, set V. Fe = V. r i = nvi, and eliminate E between

the two.

(-L + i)nvi = -(V +Vi) Vz n

V 2n + =0(Z)

Here,

eVi (V+V i)

Da = e i (Ve+V)e + 1

with «i << Re" This is the same equation that we would have obtained if we had assumed

re = r i as Schottky 7 did in the ambipolar diffusion theory, but we derive it under far

less restrictive assumptions.

We must solve this equation subject to boundary conditions at the probe of radius rp

centered at r = 0, and at the wall r = R. At the probe, we have

re(r -n eV e dnI

e Zi2me e p e e e dr p

(3)
ri(rp =-np /Vis ei p qi dn

1 p

where

Vs/Ve

Ce = e V es for Vs < 0; i= 1 for Vs <0

-Vs/Vis
e = 1 for Vs > 0; ci = e for Vs > 0

4



The left-hand side of Eqs. 3 represents the current of electrons and ions across the

sheath to the probe, as determined by the potential difference Vs across the sheath and

the plasma density at the sheath edge, n . The right-hand side represents the transportP
of electrons and ions out of the plasma to the sheath edge under the combined influence

of density gradients and electric fields.

Eliminating E between the two equations, we get

1 dn Q(4)np dr Irp rp

where

Q = Qe + Qi

r
p eV

Qe eVe+Vi) Zirme e

rp eV.
______ is e

Qi - i(V +Vi) 21rm. 11

The solution of (2) in spherical coordinates is

n ='{A sinx +B cos x}, (5)

where x = D a r. When no probe is present, B = 0, since the density cannot be

infinite at r = 0; A n and i must equal w/R in order that n = 0 at the walls.
a

When a probe is present with radius small enough that xp = irr p/R << 1, the value of

vi is not altered by the presence of the probe and x remains equal to wr/R. We deter-

mine the ratio B/A from boundary condition (4) by equating n from (5) to Q/r

and solving for B/A. It is shown in Appendix II that

QXp

A 1 +Q (6)

If the probe radius is very much smaller than the tube radius, the entire region of the

plasma which is perturbed will be that for which n in the absence of the probe isn x
sin x nX s xn=no x = x = n . In substituting (6) in (5) we can regard cos x = 1 and x 1

and obtain for the density in the perturbed plasma

n =nol 1 (7)

5



The plasma density at the sheath edge, which will be determined from the Langmuir-

probe analysis, is

n
n=y (8)n p I +Q (8

The plasma density versus distance from the probe given by Eq. 7 is shown in

Fig. 1. Note that this is a very slowly varying function. At a distance of 10 probe radii

into the plasma the perturbation is still 10 per cent as large as it is at the probe surface.

We shall have more to say about this point in Section IV.

1.0 L

01

Cj

0 5 10 15 20 25
r/rp -

Fig. 1. Electron density in the plasma as a function of distance
from a spherical probe for which Q = 1.

2.2 PERTURBATION OF PLASMA POTENTIAL

To calculate the electric field, we return to the transport equations, take the diver-

gence of both sides, and solve for the divergence of nE, noting that div re = div r,

V -(nrE) = QLCCILiVi)Z n

Invoking the fact that oi pe" and assuming that Vi will be comparable to or less

than V e , we obtain

V (nE) = -Ve V 2 n. (9)

In spherical coordinates,

2V- (r nE2 Y r r
Srr ( r

rP (rpnEr z V r F)

6



Integrating and solving for the electric field, we obtain

2r

E -V-Ldn + P (10)
r e'n - .nr

where

K = [nE +Ve drn]rP.

and can be evaluated by solving Eq. 3 for Ep, the electric field at the edge of the sheath.

n Qe(V+V)
It is shown in Appendix I that K 1 e Q

p

1 + Qe(V+Vi) o (11)
r -e + I+Q rp n

In the unperturbed plasma, n = a constant no, and E 0 0. We can regard the potential

of the unperturbed plasma as a constant V0 . We shall call the potential of the plasma

at the sheath boundary V .

V = Vp E r dr
p

Vp -V o =AV = Er dr.

p

Here, AV is the perturbation of plasma potential at the sheath boundary caused by the

presence of the probe.

AV 0 dn Qe( ir+Vi 0r dr

AV:-Ve - .dr + 1 +Q rprprp r 2(1_- x-

n
The first integral is equal to -Ve In- 2 = -V e in (I+Q).e n ep

Q (V +V)
It is shown in Appendix I that the second is equal to e i " ln (I+Q). Therefore

AV = - [ e i] In (I+Q). (12)

The first term in (12) is the Boltzmann term, resulting from the fact that the potential

and electron density are related in thermal equilibrium according to n ~ exp (V/V e).

From this term the plasma potential is shifted negative by the presence of the probe.

7



The second term is large only when Qe is a large fraction of Q. Reference to Eq. 4
shows that this can happen only when the sheath potential is slightly negative, zero or

positive. Then the electron current to the probe is large and the electric field in the

plasma must be reduced from the thermal equilibrium value to permit the increased

electron current to flow. Whether or not the electric field actually reverses, and the

perturbation of plasma potential becomes positive, depends on the exact value of the
ratios of '-'/ Le and Vi/V e .

8



III. DISC PROBE NORMAL TO A MAGNETIC FIELD

3.1 PERTURBATION OF PLASMA DENSITY BY THE PROBE

The basic procedure is the same as before; set up the ambipolar diffusion equation

under the assumption that I'i  reo div r i = div re = nvi. Solve it subject to the bound-

ary condition that diffusion current toward the sheath boundary from the plasma is equal

to the random current across the sheath to the probe. This determines electron density

as a function of position; then use the transport equations to calculate the electric field

that is necessary to bring about the flow of a given probe current.

The derivation of the ambipolar diffusion equation in the presence of a magnetic field

is somewhat more complicated. Allis and Buchsbaum 4 show that when the azimuthal

components of current flow are eliminated the transport equations in cylindrical geom-

etry are:

r -nR Re Vdn
Fez = -neEz e eVe

nreEr _eVe dn
rer = 2 2 dr

_ye _ye
(13)

riz= nREz - diVi d-

r. nR iE V i dn

ir 2 2 dr
Yi Yi

Hr, 2 2 22 2 2 2Here, y e 1 + Re B Yi = 1 + RiB With only the assumption that div ' i = div Fe = nvi

there are too few equations to eliminate all components of E and r. I choose to elim-

inate, for the present, both components of the electric field. This procedure gives the

result

-F-r + IF. =(Ve+Vi) dn
Re ez Ri 1iz eI-

(14)2 2

e r +- F vv. v+ i dnRee i Fir e .Ld

Note that

Sadiv drez = drez
r r er e dz i dz

1 a driz driz (15)
- (rr =div r z - n i "

rB r ir d iiveofth z n

By taking the z derivative of the z component of Eq. 14 and operating with the

9



r component of the divergence on the r equation, with the aid of (15), we can eliminate

all but one of the components of the divergence of r or re . I choose to retain dr /dz.
1 e ez

Straightforward differentiation and algebraic manipulation leads to

r2 /2 -y2\ 2 2rnn 2 Ye + n) Ye -i ez(= Vj) r r + + + / 1 1  (16)

The left-hand side of (16) is a normal homogeneous diffusion equation with all of the

usual solutions obtained by setting it equal to zero. Because of the right-hand side,

there is also a particular integral, a function of z and r, which leads to a whole new

family of solutions. We restrict ourselves to four limiting cases:
dre

(i) -- = 0. The right-hand side of Eq. 16 is zero and it becomes

D /2a. (rn\ 1 Yi D ~
aL _ 8 L + D + nv =, (17)

2 r Or \Or P2a Td n jO,

2 2where D = i(V +V.), p2 = 1 + e~iB , and we have assumed Fte >> Li throughout. Thisa 1 e i L1case would represent conditions near the anode of a discharge tube carrying a current

that is independent of z in an axial magnetic field.
(ii) _  = 0. From (14) we have d _L (V+V) which when substituted

dz dz = i  eei =7
in (16) gives dz

D2zDaL In yedz- n + nv O. (18)2 r 8r \ or/ + a  2 2 =
'3 'P dz

This equation was previously derived by Allis 4 under the assumption that iz = 0.
(iii) dz nv. Since div r d - ez +1 8L (rr ) = nvi, this assumption is tanta-

dz di e = z rO er 1
mount to assuming that the radial component of the divergence of the electron current

flow is negligible in comparison with both the z component and the production per unit

volume.

Under this assumption, Eq. 16 becomes

aOn n_--L(rn L- +D. nv .(9
2 r Or Or a 8 z (19)

Yi O

Equation 19 was previously derived by Simon.7

drez 1 8
(iv) dz -r r (rrer) + nvi, with both of the terms on the right-hand side being

of the same order of magnitude. It is shown in Appendix II that this assumption

leads to

_.L.i ( Dn 8Nn
Zr +Da Vn+n . (20)

10



This is the "normal" ambipolar diffusion equation that would be obtained by letting

r i = r e '
The question now arises, Which, if any, of these four diffusion equations is appli-

cable to the present case? We can rule out the first two on the ground that neitherdre dri.
dz nor d-z can be zero for the plane probe normal to the z-direction. We are left

with the choice between the Simon and the normal ambipolar equations. Here, the choice

rests squarely on the relative magnitudes of nv. and 1-- (rrer).

For the infinitely long positive column in a magnetic field with diffusion to the walls

the only loss mechanism, these two are equal. The Simon diffusion equation was origi-

nally derived for a relatively short discharge column in an axial magnetic field with

electron loss to conducting end plates being the major loss mechanism. For this case
1 8 dez
r8 (rrer) is negligible in comparison with d and nvi, and it becomes more and
more negligible the higher the magnetic field.

We have from the outset restricted ourselves to considering probes that are small

in radius in comparison with tube radii. If the probe radius is sufficiently small that

electron loss to the probe, even though it may occur from a long column of plasma of

radius approximately equal to probe radius, shall be small in comparison with the radial
diffusion loss to the tube walls over the "characteristic length" of the positive column,

then the electron temperature and ionization frequency in the plasma will be unchanged

by the presence of the probe. We therefore employ the normal ambipolar diffusion

equation.

It is convenient to express this in dimensionless variables, p = z-, = and let

Vi (A) 2 D a Equation 20 then becomes

1 8 (p8 On n
TP- ) + A8 z + (2.4)2n = 0. (21)

Equation 21 is to be solved subject to the boundary conditions:

for = c n = n J (2 .4p)

At = 0, at the probe, for r <rp

eV

(22)
n is d dz= 0

Equations 22 are essentially the same as Eq. 3 and lead to the same bound-

ary condition:

11



I dx- for r < r, (23)7p 7 z 0 rpp

p zO p

where Q is as we have defined it in Eq. 4. Since the whole problem'is symmetricaldn
about = 0, in the plasma for r > rp we must have - = 0 at f 0, otherwise the density

gradient would have a discontinuity at T = 0. Substituting p for r in (23), we can sum-

marize the boundary conditions:

(n 
Q

dn (24)- 0 p > p

=c n= n0 J0 (2.4p)

It is shown in Appendix H that the solution of (2 1), subject to conditions (24), is

co exp N/-mj -(2.4)' 1 (2;)J(m

n(p.t) = noJo(2.4p) - 2QnP 
t) Jl(mjp) Jo(mp)

j=2 m. Jm.-(2.4)Z J2(m.)
J 2 J 1(m

Here, m. is the jth zero of J the Bessel function of zero order. To determine the

ratio of n to n0 , set p = 0, t = 0. The left-hand side then becomes np, the plasma
density at the sheath edge, by definition. Solve for np

np 1
-- f i  j(mp) (25)

j=2 m. mf-(2.4)- J-(mj)
J J1

The series is a series of alternating terms of decreasing magnitude, and therefore con-

verges, but the convergence is very slow. It can be greatly improved by calculating

n(p=O, t=c), where c is small in comparison with the sheath thickness. This will differ

by a negligible amount from the plasma density at the sheath boundary; the retention of

the decreasing exponential terms in the series greatly improves the convergence, and
in fact, makes it absolute.

Note, however, that in the limit of zero magnetic field, P = 1, and we are dealing

with the same problem that we have treated in Section II, although in a different geom-
etry. Equation 7 shows that the perturbation of plasma density extends many probe radii
into the plasma. Figure 2 is intended to suggest that outside of a certain radius, which

is somewhat greater than the probe radius, the contours of constant plasma density will

be much the same whether the probe is spherical or plane.

Therefore, physical intuition tells us that the perturbation of the plasma by the probe

12



Fig. 2. A: contours of constant electron density in the plasma as a function of dis-
tance from a plane probe. B: contours of constant electron density in the
plasma as a function of distance from a spherical probe. The difference
between A and B is slight except very near the probe.

will be essentially the same whether it is a plane probe or a spherical one of the same

radius, within numerical factors of the order of unity. We conclude, then, that the

infinite series in Eq. 25, which does not depend on magnetic field, has a sum of approx-

imately 1/2. For the plane probe in a magnetic field, therefore, Eq. 8 is replaced by

n= o(26)n p 1+ 0 Q "26

The effect of the magnetic field then is to magnify the Q-value for a particular probe

radius - mean-free path combination by the factor = 1 + .'i 2  In order-of-

magnitude numbers, this is a factor of 10 at 1 mm pressure and 10,000 gauss.

3.2 PERTURBATION OF PLASMA POTENTIAL BY THE PROBE

The procedure is the same as that in Section II. Calculate the electric field from

the transport equations, and integrate from the probe to infinity to find the difference

in potential between the plasma at the probe sheath surface and the undisturbed plasma

at infinity.

We start with Eqs. 13, and obtain the divergence of Fe and Fi, setting both equal to nvi

8 82 n ILe 1 "eVe1 On\div r nv2 - r-(rnEr) 2 r r 8r
e = i  - Le1 (nz) - eVe 8z2 r r 2e

div(n _ - an. i _ L ) 1ti _ j8(randiv r i  nvi iz Z ivi 2 rOr r 2 r8r or
z

13



Eliminate - (rnE) between the two equations.

(21 ,~ ny 2) -2- (nE,) - (-y2Ve+Y'Vi) 1 -- (V +V (r In (27)

2 y 8 2 22 2r 2r
i+  B ~l +Kel8 2

i -Ye= e + ei B  + + ILii~B e(+N RiB 2 )
i Re Lile Re~i

2

-- vi+v) D-"
a

Here, we have neglected Ri in comparison with e" From Eq. 20, we have

(Ve+Vi)-! r 8n\) 2(+ 82zn + p2 (Vi+V)nVi '

a8z2  D a

Substituting in Eq. 27 and solving for E z gives

a (nE (YeVe+yi'Vi.P2(Vi+Ve)) 82 .F' nz) Y 2 2 O

e- i8z

Straightforward algebraic manipulation shows that this reduces to

a(nE) (IJVe - 1iVi a 82n (28)
Tz z V 1e+Ti ) az 2 '

This is basically the same equation as the one that we obtained for the spherical case,

except that here we have z derivatives instead of r derivatives. The fact that the mag-

netic field drops out as far as the relationship between E and dn/dz is concerned isz

one that we could have deduced by intuition, since plasma particles diffuse freely par-

allel to B.

Neglecting Li in comparison with Ie and integrating (28) gives

=-VI n K(r) (29)
Ez e n z--Tn.- (2

We determine K(r) from the value of Ez, np, and dn/dz at r=0, z=0.

K(O)=nE +V d]z=0

pp ed

Since the boundary conditions for the plane probe at z=0 are the same as those for the

spherical probe at r=rp, K has the same value as that derived in Appendix I:
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n pQ e(Ve +Vi )
K(O) --

n
In this case, however, np so that (Z9) becomes

n Q (V +V.)
E =-V--+ (o e _e (0Ez = -Ven dz I1+jQ)rp ,n

where this applies only for r=0.

Note that the exact integral of this expression from z=0 to z=0 along r=0 will yield

the perturbation of plasma potential. This will involve integrating over infinite series,

which we do not consider worth while now. We shall, therefore, resort to an approx-

imation for the variation of n with z, as shown in Fig. 3.

With this approximation

n =1 +Q + z < Pr

= no  z >_ Pr p

and we carry out the integration between the limits of np and no (z=O to z=pr p:

1 .0B

C
°

C

1.0
- Z/'p

Fig. 3. A: Schematic representation of correct variation of electron density vs
distance along the z axis away from a plane probe. B: The function ne /no=

I (1+Q /r ) used for the integration of Eq. 30 in Section IH. C: The
I+PQ 

I PQ
function n e/n 0 + .. exp(-z/pr ) used for the integration of Eq. 30
in Appendix H. /
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1 dn Qe(Ve +Vi 1

E= -Ve n T'z + rp 1 + Qz/rp

n ) Qe(Ve+Vi) SPrp dzFV - e  n no r p 0 1 +Qz/r p

Qe (V +V.)
AV = -Ve In (I+pQ) + e in (1+3Q)

{feVe +e e
AV =_ f- - In (+pQ) (31)

In the limit of zero magnetic field this is seen to reduce to the same value as for the

spherical case.

It may be objected that the electron density function chosen in Fig. 3 is highly arti-

ficial, but it is shown in Appendix III that the function

(1 -T+Q -z/Prp)n=no° - 1 l+Qe

(dotted line in Fig. 3) for the second term in the integral yields

Q (V +V.)ee iIn (I+pQ)
(1+PQ)

which is sensibly different from Eq. 31 only for Q << 1, for which a diffusion theory will

not apply.

16



IV. DISCUSSION

From a perusal of the equations derived in Sections II and III it is clear that the ion

temperature, both in the plasma and at the sheath boundary, affects the results through

its appearance in the Q's. In low-pressure plasmas in which V >>V., the ion temperature
e 1

does not affect Qe" However, the presence of Vis (the ion temperature at the sheath

boundary) in the exponential of Q. shows that this quantity will have a major effect upon
1

the exact shape of the probe characteristic for positive sheath voltages.

The question therefore arises: What is the value of ion temperature at the sheath
boundary? Since the ions are accelerated toward the sheath by the ambipolar electric
fields, they might be expected to arrive at the sheath edge with a higher energy than

they possess in the plasma. Tonks, 8 in fact, derived the relationship, for long mean-

free paths and no collisions, that the ions arrive at the sheath boundary with an

energy approximately equal to the electron mean kinetic energy. Allis and Buchsbaum4

also derive this result in their treatment of the pre-sheath.

These workers have all been interested in the ion saturation current for very nega-

tive probe potentials. The only effect of the ion temperature at the sheath boundary is
to determine the ion current density. The effect of ion energy on the probe character-

istic at positive probe potentials has been ignored. There have been sound reasons for
this, of course; after all, the electron current at zero sheath potential is several hun-
dred times the ion current, and the decrease of ion current to zero with positive sheath

potentials cannot even be noticed.

In the regime to which the results of this study apply, there is a much greater effect

of ion current on the characteristic for positive sheath potentials. As sheath voltage
becomes positive and ions are repelled from the probe, Qi - 0. Since Qi is of the same
order of magnitude as Qe' the value of Q decreases substantially as -0. Therefore
the plasma density at the sheath boundary, np, increases considerable as Qi- 0. This

is necessarily reflected as an increase in electron current to the probe as the ions are

repelled from the probe.

Therefore, although the change in ion current is much too small to measure directly,
the change in electron current, because of the retarding of the ions, may be quite large -
a factor of 2, or more. Moreover, as will be made evident presently, the shape of the
characteristic for positive sheath potentials is considerably affected by the ion temper-

ature at the sheath boundary.

We are unable to use the result of Jonks; the distance over which the ambipolar
electric field extends, and over which the ions are accelerated toward the probe, is
several probe radii; that is, large in comparison with the ion mean-free path. The ions

are therefore making many collisions on their way to the probe and losing energy in

large chunks.

In fact, the energy with which the ions arrive at the sheath boundary is just equal
to the energy that they had after their last collision plus the energy gained from the
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accelerating field in the last free flight, or

Vis E XV- g -E i s

(VfzV) -

where Ep is the ambipolar electric field at the sheath edge, V is the gas temperature,

and X. is the ion mean-free path. The factor of 2 holds only for equal mass of ion and

gas atom. It is shown in Appendix III that this leads to the conclusion that V. WV..
is 1

Figures 4, 5, 6, and 7 show calculated probe curves for various gas pressure times

probe radius products, calculated for mercury ions in argon, under the assumption that

V. = 1/30, 1/10, 1/3, 1 multiplied by Ve, respectively. These curves apply only to

probes for which sheath thickness is small in comparison with probe dimension, for

which a sharp "break" at plasma potential is expected in the unperturbed case.

Note that all of the curves approach the straight line at negative probe potentials;

thus it is indicated that the measurement of electron temperature can still be made. The

deviation of the curves from the Maxwellian line as zero sheath potential is approached

is the result of the second term in Eq. 12. This is the shift in potential in the positive

direction (from the thermal equilibrium potential) required to draw electrons in toward

the probe.

The most surprising feature of these curves is the fact that the "knee" occurs not at

zero sheath potential but at a positive sheath potential. The reason for this is that elec-

tron current continues to increase with positive sheath potentials as ions are repelled,

Qi - 0 and the electron density at the sheath edge increases from 1/I+Qe+Qj. to 1/+Qe .

Saturation electron current is not achieved essentially until all of the ions are repelled

and electron density at the sheath boundary no longer changes with increasing positive

sheath potential.

We are led to the conclusion that there is no clear-cut experimental method of identi-

fying zero sheath potential without some additional information. At high ion temper-

atures, the "knee" disappears completely, while at lower ion temperatures the positive

displacement of the "kneel from zero sheath potential depends on the ion temperature.

It is necessary to resort to a series of successive approximations and calculated values

of the Q's to be able to identify zero sheath potential from a given set of experimental

data.

The Q's cannot be calculated without knowledge of electron and ion temperatures.

The electron temperature can be obtained in the usual way, from the slope of the straight

line portion of the logarithmic plot of electron current against probe potential. In order

to estimate the ion temperature, the following empirical procedure can be used. Meas-

ure the potential difference between the extrapolated electron-current vs probe-potential

straight line, and the "knee" of the experimental curve. Since the "knee" may be diffi-

cult to identify and the procedure is empirical, it is preferable to measure this potential

difference at some lower current than saturation, say 90 per cent of saturation (see

Fig. 8). Figure 9 shows this potential difference, AVk vs Vi/Ve for various values of

18



Ve =30Viprp

0.0218 0.146
0.072 0.481

0.218 1.46

0.486 3.24

0.720 4.81

t ZERO SHEATH POTENTIAL

Z
ad-

U
Z
0

,.'.

0
a.I

C,

0

Q (VP)

pr P = 0.720

I [ I
-5 -4 -3 -2 V 1 0 2 3

Ve

Fig. 4. Probe electron current vs probe-to-plasma potential difference for V = 30 V.e Iand various values of Q (V =0). Arrows indicate location of zero sheath
s

potential. Pressure and probe radius products giving those values of Q for
mercury ions in argon with I ev electron temperature are also given.
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V e = IOV prp Q(o)

0.0218 0.173
0.072 0.572

0.218 0.173

0.486 3.87

0.720 5.72

Q(VP)

prp = 0.720

-5 -4 -3 -2 -1 0 1 2 3 4 5
VP- VV

Ve

Fig. 5. Probe electron current vs probe-to-plasma potential for V = 10 V., and the
e I

same values of pressure times probe radius as in Fig. 4. Arrows indicate
location of zero sheath potential.
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Ve= 3Vi  prp Q

0.0218 0.203
0.072 0.670

0.218 2.03

0.486 4.53

0.720 6.70

Q(Vp)

L I -A ,

-5 -4 -3 -2 -1 0 1 2 3 4 5

VP- VCD

Ve

Fig. 6. Probe electron current vs probe-to-plasma potential for
V = 3Vi. and the same values of pressure times probee1
radius as in Fig. 4. Arrows indicate location of zero
sheath potential.
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Ve =. prp Q(V= 0)

"0.0218 0.194
0.072 0.643

1.94
0.218 6.43

00.486

0.720

-5 -4 -3 -2 -1 0 I 2 3 4 5

Sv

Fig. 7. Probe electron current vs probe-to-plasma potential for Ve = Vi, and the
same values of pressure times probe radius as in Fig. 4. Arrows indicate
location of zero sheath potential.
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pressure times probe radius p .rp, under the assumption that there are mercury ions

in argon.

From a comparison of an experimental value of AV k with calculated curves of AVk vs

Vi/Ve (obtained from calculated curves of electron current vs probe potential) the ratio

Vi/Ve can be determined. Hence the value of Qe and Q. can be calculated.

Next, using the calculated values of Qe (V =0), Qi (V =0), we determine the electron

current for which the potential difference between the extrapolated ie vs V line and the

experimental curve is

B

AVk

z

U
z
0

R A
U
L4

0

0

_J

PROBE POTENTIAL-

Fig. 8. Construction for obtaining AVk' A, measured electron-current vs

probe-voltage characteristic. B, extrapolated linear portion of the
characteristic. Draw a line at a current 90 per cent of the satu-
ration current; AVk is the potential difference between the inter-

sections of this line with A and B.
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5

prp 0.720 MM-CM

0.486 MM-CM

3 0.218 MM-CM

0.072 MM-CM

n 0.0218 MM-CMA 1

30 10 3 1
- V./Vi

Fig. 9. AVk/Ve vs Ve/Vi for various values of r rp for mercury ions in argon.

A V (Ve+Vi) In (I-Qe-I.Qi)( ~Qi) e i ~ Vs=0e p

(See Fig. 10.) This is the electron current for Vs=0. Then, extrapolate the ie vs VP

line for a potential difference, AV 2 , beyond this current.

AV = V In(l+Qe+Qi)

The current at this potential is the random current density in the undisturbed plasma.

The probe potential at this point is the potential of the undisturbed plasma, and the

potential difference between this point and the point of zero sheath potential is given by

Eq. 12:

AV = - Ve -  Qe Ve V i ) In G+Q e+i)

V=
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0AV 2/o

B

A
--- ip

p

Z
z

u AV1
z
0

I-
Uj
W

I I I I I I I

PROBE POTENTIAL

Fig. 10. Construction for determining zero sheath potential. A and B as in Fig. 8.
Q (V +V.)

Find the current for which AV 1 = e e I n (1+QeQ.) . Intersection
e i e Vs-0

of this current with A is at zero sheath potential E). Unperturbed plasma
potential is AV 2 volts positive from the intersection of this current with B,

where AV 2 = Ve in (1+Qe+Qi)I s = O " Current at which B intersects unper-

turbed plasma potential is the random current to a probe of the same area
in an unperturbed plasma. As a check on consistency, the currents i0 , is,

ip should be in the ratio i 0 : i i = 1: 1 + IQe +Q I + Qi
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As a check on the correctness of the results, the three currents i i i ought to be

in the ratio

io: is: ip = 1: T+- ' 1 +Qe I Q .

e e VS=0

If they are not, the most likely source of error is in the determination of is, and there-

fore of 0.9 i s , and thus of V. Especially at high ion temperatures, the curve will not

reach saturation until relatively high positive sheath potentials are reached, and ioni-

zation by electrons in the sheath will cause the measured current to increase with

increasing probe potential, and the experimental curve never flattens off. Therefore,

make an appropriate adjustment in the assumed value of i s , redetermine the ion temper-

ature, recalculate the Q's, relocate zero sheath potential, and repeat the entire process

until it is self-consistent.
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V. ANALYSIS OF PREVIOUSLY PUBLISHED WORK

The purpose of this section is to examine a limited number of recently published

high-caliber probe studies in the light of the equations derived in this report. No

attempt is made to make a complete survey, nor is there any intention to deprecate fine

pieces of work.

The works considered are those of Anderson, 9 Bills, Holt, and McClure, 10 Medicus, 1 1

12 13Verweij, and Waymouth. Of these, Medicus employed a shperical probe and

Waymouth a plane probe. The others used wire probes. Since wire probes have not

been analyzed in the present study, we shall first consider the definition of an "effective

radius" for a wire probe. This may be defined as the radius of the spherical probe that

causes the same perturbation in plasma density.

It seems reasonable, in the light of the physical mechanism that has been considered,

that two probes that draw the same current from a given plasma will cause the same

degree of perturbation. Since probes draw current in approximate proportion to their

areas, we can say that the cylindrical probe has an effective radius equal to the radius

of the sphere with the same surface area:

rrp.

reff = r

where r is the radius, and P is the length of the cylindrical wire probe. Undoubtedly,

this is only approximately true, but to improve on it would require a good deal more

calculation than seems to be warranted now.

A second point to consider in discussing the reported probe studies is the fact that

probe lead-in wires, or supports, are always shielded to prevent collection of electrons

or ions. Since shields are frequently of substantially larger radius than the probe itself,

especially for wire probes, diffusion to the shield may reduce the plasma density sub-

stantially in the vicinity of the shield. This is particularly a problem with wire probes,

for which a substantial fraction of the probe area may lie within the perturbed region.

Customarily, the probe shield operates at floating potential; the value of Q for it is

therefore equal to Qi. By calculating Qi for the end of the shield and regarding it as a

spherical probe, we can use Eq. 7 to find the variation of plasma density as a function

of distance from the shield (see Fig. 11). We can therefore integrate Eq. 7 to find the

average electron density seen by the probe, assuming that the Q for the probe itself is

small. For a wire probe, this is given by

np Qishl In (1/r
n 0 ( )( rsh l+Qih) sh)

where I is the probe length, rsh the shield radius, and Qish the Qi of the shield. It
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GLASS PROBE SHIELDGLAS PRBE SIEL CYLINDRICAL WIRE PROBE 7

1.0- ---

II I I I

r/rh 10 20

Fig. 11. Electron density in the plasma vs distance from the probe shield for a
cylindrical wire probe. Q for the probe itself is assumed negligible,
and Qish is unity.

is plain that for probes that are long in comparison with shield radius, the value of n

approaches n0 .

When the Q's of probe and shield are comparable, and the probe is not long in com-

parison with the shield radius, the whole diffusion problem becomes much more compli-

cated and the calculation of the corrections to be used with wire probes is dubious.

Finally, for the majority of these cases, assumption 5 (Section I) is not really satisfied,

and the corrections calculated here can be regarded as valid to order of magnitude only.

Table I shows various pertinent data from the authors cited, together with the calcu-

lated values of the Q's.

It is plain that of the five references cited, only the work of Medicus and of Bills,

Holt, and McClure appears to avoid density and potential perturbations. It must be

pointed out that a diffusion theory is not expected to apply when either of the Q's is less

than 0.1. Since Q e Qi are approximately equal to the ratio of electron or ion mean-

free path to probe radius, and the perturbation in density extends approximately 10 probe

radii into the plasma, for Q e Qi < 0.1, the entire perturbation would take place in a

distance of one mean-free path or less.

Varweij has employed probe measurements to measure electron density, axial elec-

tric field, and electron temperature in a discharge in mercury vapor and argon. Figure 12

shows his published data for electron density as a function of argon pressure, together

with a corrected value that I have estimated. Since Verweij's measurements apply to

the case for which Vi << Ve , a well-defined saturation current would be expected, and the

saturation current would yield np = n o(l +Qe ). It is also possible to estimate too high
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Fig. 12. Data from Verweij on electron density and temperature in a discharge at
400 ma in mercury vapor at 7 microns plus argon vs argon pressure (experi-
mental points), together with estimated corrections for plasma perturbation
(solid lines).

an electron temperature, if the "best possible straight line" is drawn through the experi-

mental data right up to the apparent zero of sheath potential, instead of relying only on

the very negative sheath voltage range. Figure 12 also includes Verweij's data on elec-

tron temperature as a function of argon pressure, together with an estimated correction.

The work of Anderson is worthy of special note because Anderson compared probe

measurements with microwave electron density measurements and found wide discrep-
ancies between them. Anderson recognized the existence of serious perturbation effects

in his work and corrected the probe data according to the method of Davydov and

Zmanovskaja. When account was taken of the influence of Coulomb collisions on the

diffusion coefficients the agreement between corrected probe values and microwave

values for electron density was satisfactory at high electron densities, as shown in

Fig. 13. Also shown are the ratios n /n calculated from the Q's for various gas pres-

sures with Coulomb scattering neglected. It must be pointed out that, strictly speaking,

neither the theory of Davydov and Zmanovskaja nor the present theory ought to apply to

the case studied by Anderson, since both assume a production of ionization proportional

to the electron density. Anderson's discharge was a glow discharge in which the majority
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Fig. 13. Data from Anderson 8 on electron density as measured by probes vs electron
density as measured by microwaves for a cold-cathode discharge in helium
at various pressures. Also shown are Anderson's calculations on the
expected perturbation according to the theory of Davydov and Zmanovskaja,
including the effects of Coulomb collisions (- - - - -) and the expected pertur-
bation according to these results, neglecting Coulomb collisions but including
the fact that Ve m V i ). For the interpretation of the results at low elec-

tron densities refer to Fig. 14.

of the electrons were of very low energy (Te - 500°K) and the ionization was produced

mainly by a very few primary electrons of several hundred volts energy and by a some-

what larger number of secondary electrons with Te - 20,000"K. A somewhat different

theory in which production is assumed to be independent of position would be more appli-

cable to Anderson's case.

At low electron densities, Anderson regarded his measured electron temperatures

as being too high, which fact he ascribed to electric fields from the probe accelerating
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electrons in toward the probe and increasing their energy. Too high an electron tem-

perature would lead to too low a calculated electron density to give the measured satu-

ration current density.

Equation 11 indicates, however, that for negative sheath potentials the electric field

in the plasma is still retarding for electrons up to zero sheath potential. A more likely

explanation for too high an electron temperature is suggested by the type of probe char-

acteristic observed by Anderson, 14 shown in Fig. 14. The presence of a large electron-

current tail, which is due to the presence of the relatively high-energy secondary

electrons, restricts the range of currents over which the temperature of the ultimate

electrons can be measured to the top order of magnitude or so. Figures 6 and 7 show

that the estimated electron temperature can easily be too high by a factor of from 3 to 10.

Another point to be noted is that in the internal report 14 from which his journal

article was taken, Anderson noted that the electron density as measured from the

I
0

A

0

z
0

I I I I I

- PROBE POTENTIAL

Fig. 14. Schematic of probe electron-current vs probe-potential curves

observed by Anderson. 1 3 Two-component electron energy dis-
tributions are observed: A, "ultimate" electrons of very low
temperature; B, secondary electrons (~50,000K). Comparison
with Fig. 4 shows that the electron temperature of the ultimate
electrons will be measured from the range of probe potentials
near zero sheath potentials, for which the apparent electron
temperature will be too high.
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electron current was approximately 11 times as great as the ion density measured from

the ion current. Since in the plasma n. = ne, the apparent difference must lie in differ-
1 e

ences in the degree of perturbation. From the differences between Qe and Qi given in
Table I, we would expect an apparent electron density approximately 4 times as great

as the apparent ion density. It is possible that the effect of the shield could influence the

results in the ion-collecting range but have smaller influence in the electron-collecting

range, and thus further accentuate the difference.

The work of Bills, Holt, and McClure, and that of the author have in common the

use of a pulse technique for making probe measurements. Perturbation effects will be

slightly different under these conditions, since the pulses are too fast for the density

distribution in the perturbed plasma to change during the pulse. The density distribution

in the plasma is fixed at that determined by whatever bias is placed on the probe between

pulses. All that changes during the pulse is the electric field in the plasma. It is easy

to show that under these conditions, and under the assumption that the probe is biased

strongly negative between pulses, that

n
P 1

no 1 + Qi

=[Ve - Qe(Ve+Vi)]AV =-Z Q)  ] In (+Qi).

Bills, Holt, and McClure comment that their electron density as measured by pulse

methods is 16 per cent, and their electron temperature is 10 per cent greater than those

measured by dc methods. While it is true that the values of Q calculated for their dis-

charge are negligibly small, their work suffers from depletion effects of a different

sort, since the effective probe radius was 5 per cent of the tube radius, and the satu-

ration electron currents were as great as 20 per cent of the tube current. It seems

reasonable to suppose that a different sort of depletion theory, derived for this partic-

ular case, would show similar differences between perturbations observed with pulse

and dc methods of measurement.
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APPENDIX I

MATHEMATICAL DETAILS RELATING TO SECTION U

1. Boundary Condition on Electron Density at the Probe

From. Eq. 3,

=JA sin x +Bcos x} x j.
x

and from Eq. 4,

1ldn Q
n drF r - r

determine the ratio B/A.

From Eq. 5,

1 dn w 1 dn w fAcosx-Bsinxl W 1
ndr 'n Asnx+Bcosxj Rx'

Equating this to (4), noting that x <« 1, cos xp 1, sin x =x ,we obtain
pp p.

- BxQ 
QwjA p Qr'f

A {Axp+B} Rx r R x
ppp p

A-Bxp +

Ax +Bx
p p

2
Ax p-Bx =Ax (1+Q) +B(+Q).

Since x 2«< 1,
p

Q
A T +QCp

2. Determination of Constant K in Eq. 10

K = [nE+Vel] =n nE + V d
r p dlp

This we evaluate from the probe boundary condition (Eq. 3) by solving for E p the elec-

tric field in the plasma at the sheath boundary. Subtracting the two equations and sub-

stituting from Eq. 4 the values Q e and Qi yields

npQ(V +V) n Q.(V+Vi)
-pe i+ pier =-ZnE (-)d

r p pp e i dr
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Subtract (Vi+Ve) An from both sides:
p

n Q (V +Vi) npQi(V +V)p ee i piev e dn
+ r (Ve+V 2 npEp 2 dr

rp p r

npQ

For (V +Vi) dn on the left-hand side, substitute from Eq. 4 its value r (Ve+Vi) +

r p Q

pp

npQ.

-(V +Vi)

pK~ ~ ~ = (Vp~ ++V.))-

From Eq. 8 substitute the value of n . Then

n Q (V +V.)

(l+Q)rp

3. Evaluation of the Integral

Qe(Ve+Vi) '0 dr

1= r Qx1rz i ( l+Q)x/

Changing variables from r to x = r gives

Qe(Ve+Vi) 00 dx

K Qx

Now change variables again to u =-. Then
Xp

Qe (Ve +Vi) ; du

I= +Q 2 Q
u l+QU

The integral can be broken up by partial fractions:
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Q (V +V 1 +Q cc du i+Q
+= 10 Q Q

+ Q

Q(+. u f- Q/I+Q\

Q(Ve+V.)I

Qe(Ve+Vi)

QeV= i in (1+Q).
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APPENDIX II

MATHEMATICAL DETAILS RELATING TO SECTION III

1. Derivation of the Ambipolar Diffusion Equation when I- (rrer) nv

We assume that er a-Da0- but, for the moment, do not specify what D aiis:

O z = nv. + D 1 8 r O
8z 1 a.r Or Or

and substitute it in Eq. 16.

2 / 2 2 \ 2 2 ,2 2
18 eVn e 'i e Yi) 

i 
(e Ir

(V +1 + V+ 1
Yi Or) r 21 \' BrO r)

r in e ou e 1 e e t r u ir

2

- Yi DJ L 2 82 nr- +IiV+.i~

(Vi(Ve ++V) 2 i +
2 2 e al

YiYi e Y.1 O

Solving for D, and noting that i(Ve+V ) is equal to Dam we have

a± 2 2

~i~e e 11Y
D . 2 22 22.L

Multiplying out = 1+ BYe1+'IeB0and noting that ti < we h gives

D D

a. 1 + A eB

Therefore

D---I-a (r On +D a+nvi 0
ar r ra 

2  1

which is Eq. 20.
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2. Solution of Eq. 21 Subject to Boundary Conditions (24)

I k p in- + ' 2 + (2.4) n = 0.

Assume that n is a separable function of position

n - g(p) f(Q)

1 a (p 8g) +18 2 f + 22=0
Pg p Tk - f a. -2. 0

Le Z-f = rn - (2.4)2, for which we shall presently place a restriction on them.

f(~ A~ exp ( rm -(2.4)9 + B~ exp .. m - (2.4)2

In order for n to be finite for r o c, all A.' s must be zero. Since g(p) = J (m p

n(p,~)=Z Bi ex~pI- m. (2.4) JO i)
j= 1

This must be used as a Fourier type of series to match boundary conditions at the probe.

Note that

S0l P{Jo(mJP)Jo(mkP)} OP = 0 if jk

= 1 2 m.) if j =k

provided that m.i and mk are any two zeros of Jo. Therefore, we require that the m j s

all be zeros of J . This also ensures that n = 0 for r =R (p= I).

We have, then,

'pnQB= ex x (.) J o(mJ) = p

pp

~~Bj VmjF-5.76 Jo~nP

j= 1
0 ~p

Multiply both sides by pJo0(rakp)Op and integrate from zero to unity.
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PnpQ Bk _ (2.4 2 j 2(mk)
P pp  (mkp) dp = -

B (2.4)22(mk)

2 p mkPpJ l(mkPp) ]  -

2 PnpQJI(mkPp)

Bk=- k# 1

mk Im k (2. 4 ) J1(mk)
/2 - 2 0 a edtrie

The coefficient of the term for k = 1 (for which k (2.4) 2 0) can be determined

by noting that this term has no -dependence, and a p-dependence of Jo(2.4p). Its
coefficient must be the value of n on the axis an infinite distance from the probe, which

is n0 , the axial density in the unperturbed plasma:

n(p,t) = n0 J 0 (2.4p) - Zn p Q I (4 m

j=2 m. m - (2.4)2 JlZ(mj)

which is the desired solution.

3. Alternative Determination of Plasma Potential Perturbation

Our purposes here are to determine the integral

noQe(Ve+Vi) 0O dz

(I+PQ) r p n

using a different function for n, and to show that its form is not greatly different from

the result obtained in Eq. 31. Therefore the value of the integral is not too sensitive

to the exact shape of the function chosen for n.

It must be pointed out that, since n approaches a constant value, the integral will

diverge. The physical reason for this is that the integral represents the integral of the

electric field in the plasma which is required to draw the electron probe current and
hence will ultimately become the integral of Je/Rene. However, we note that in the pos-

itive column of the sort of discharge which we are discussing here, an increased current

requires a higher electron density, but the electric field remains approximately constant,

or even decreases. In the actual physical case, the drawing of probe current requires

that the axial density at infinity be higher than in the unperturbed -ase. Since our assump-
tions of rp << R imply that probe current will be very much less than tube current, we

shall..neglect the disturbance of axial electron density at infinity. The divergence of the

integral will be overcome by subtracting the electric field required to draw the probe

current at constant axial density, no, and write
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n0QeVeVI) 1 L) dz.
(I+Q r 

np
This particular problem was avoided before by integrating between the limits np and no;

this took us not to infinity but to z = pr with the function chosen.

Assuming that n= n 0 (1 -~ T+ P e /P) we obtain

Qe(V+Vi) oc 1

(1+PQ)r soQ -z/pr

-+P e- P

(PQ% -z/prQe(Ve+V.)p T -Q
1I= e r K pQ -z/pr dz

PQe(Ve+Vi) ooAe" l du
- (l+PQ) uO 1 - Ae - u

-Qe (Ve +Vi) In 11-Ae-U}
I + PQ 0nIAe}

PQe(Ve+Vi) I Q
1+ Q f 1+ PQ

Q (Ve +V.)
e eiIn Q)Q) In I+40
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APPENDIX III

CALCULATION OF ION ENERGY AT THE SHEATH BOUNDARY

Starting with the fact that

V. - V
V. 2

Vis 2 p kis

expressing

k.
e e 1

1 miV m iN/i 7 m-

/Vim.

K = i -e

and, from Eq. 11, obtaining
ld Qe(Ve+Vi }

1 dn + rEp =- e n dr rp r

QVe +Qe(V +Vi )

rp 
rp

Q eVi - QiVe

r
p

we have

V / e -eV1) -

Replacing the Q's by their values, we have

Vi -vg e eV i
vis = --- + --- 1 V + v i % exp(-VVis)

v. ji /eVs 3V}Ve + ei e

Here, the two exponential terms are retained only when they are less than 1.

Multiplying through, we have

V. - -V:--
r1 VV V. 1.3V V.m.

2 + e +- exp(-V 1V e I exp(V/V)"
e +I e 1 e
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In the vicinity of zero sheath potential the second term is small in comparison to the

first; hence, for the moment, we assume that V V..

V. -V
Vis 2 +Ve +V i

For ViVg<< Ve ,

3 V

is - i

For Vi=Ve>>V,

V. V.___ + --,i 3 V
is 2 2 Jr ~-2 + "

Therefore, it is reasonable to say that Vis, the ion temperature at the sheath edge,

is approximately equal to the ion temperature in the undisturbed plasma.
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